### Set

A set is a collection of objects. The objects are called the **elements of the set**. The relationship between sets is illustrated with a **Venn diagram**.

If S is a set having a finite number of elements, then the number of elements is denoted by |S|. A set is often defined by listing its elements. For example, S = {-5,0,1} is a set with |S| = 3.

A **union** of two sets contains the set of all elements of both sets. For example, the union of sets A = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and B = {2, 4, 6, 8, 10} is S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

An **intersection** of two sets is the set of the elements that are common to both sets. For example, the intersection of sets A = {0, 1, 2, 3, 5, 6, 7, 8, 9} and B = {2, 4, 6, 8, 10} is S = {2, 6, 8}.

**Disjoint sets** are two or more sets with no elements in common. For example, set A and set B are disjoint sets if set A = {0, 2, 6, 8} and set B = {1, 3, 5, 7}.

A **subset** is a set whose elements appear in another, larger set. If all the elements of set B = {2, 3, 5, 7} also appear in set A = {0, 1, 2, 3, 5, 6, 7, 8, 9}, then set B is a subset of set A.

### Two Sets

For any two sets A and B, the union of A and B is the set of all elements that are in A or in B or in both. The intersection of A and B is the set of all elements that are both in A and in B.

**For 2 sets:** A and B: P(A u B) = P(A) + P(B) - P(A n B)

When counting elements that are in overlapping sets, the total number is equal the number in one group plus the number in the other group minus the number common to both the groups.

### Three Sets

**For 3 sets:** A, B, and C: P(A u B u C) = P(A) + P(B) + P(C) – P(A n B) – P(A n C) – P(B n C) + P(A n B n C)

### Sets as Groups

Group problems regard populations of persons or objects and the way these populations are grouped together into categories. The questions generally ask you to either find the total of a series of groups or determine how many people or objects make up one of the subgroups.

** Group 1 + Group 2 – Both Groups + Neither Group = Grand Total**

For example, if out of 110 students, 47 are enrolled in a cooking class, 56 take a welding course, and 33 take both cooking and welding, you can use the formula to find out how many students take neither cooking nor welding.

### Venn Diagrams

Venn diagrams provide visual representations of union, intersection, disjoint sets, and subset.